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COMPARISONS OF METHODS OF COMPUTING HENDING

MOMENTS IN HELICOPTER ROTOR ~ADES IN THE

By John E.

PLANE OF FLAPPING.

Duberg and Arthur OR.Luecker

SUMMARY

Several methods of computing bending moments in
helicopter rotor blades in the plane of flapping are
reviewed, and the results of a numerical example analyzed
by four different methods are compared. The effect on
computed bending moments of the tip-loss correction
introduced by Wheetley Is also considered.

The comparison Indicates that, from the standpoint
of accuracy of results &nd ease of application, the
method proposed @ Cierva is the m,ostsuitable for routine
analyses. The tip-loss correction is shown to have a
substantial effect on computed bending moments.

Ih~ODUCTI(lN

The determination of the bending stresses In rotor
blades during flight Is one of the important problems In
the stress analysis of the structure of the helicopter.
The problem IS complicated by the fact that the air loads “
and the Inertia loads are continuously changing as the
blades rotate and that the bending deflection of the
blades has an important effect on the moments developed
therein. The analysis can be sinpllfied if the blades
are assumed rigid and therefore unable to bend, but under
this”assumption the computed bending stresses superimposed
on the centrifugal-tension stresses are relatively high.
A more exact analysis, In which .therelieving effects of
centrifugal tension on blade bending are Included, gives
much lower values for these calculated bending stresses.

In the present paper comperieons are made between
the various methods that h~ve been proposed for the
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calculation of the ben~ing stresses In the plane of
flspplng. The effect of introducing a correction for
tip loss~ which has heretofore been ignored in stress
analyses, is also considered. A numerical example 5.s
analyzed by each of the several methods ta provide a
concrete basis for the comparisons.

THEORY AND BASIC ASWMPTIONS OF METHODS OF ANALYSIS

The basic rotor theory on which stress analyses of
rotor blades are based is that of Glauert, Lock, and

“!Theatley. (See references 2, 2, and 3, respectively.)
A consideration of the forces acting on tinerotor blade
during steady forward fllght, as given by this theory,
indicates that the total bending moment at any radial
station may be resolved into the following three components:

(1) A

(2) A

(3) A

component that is identical with the bending
moment in a rigid blade and is therefore
independent of blade bending

component, due to axial tension, that depends
on the blade deflection and therefore varies
as the blade bends

component due to the inertia forces associated
with the variation of the deflection with time

In the simplified theories, in which the blade is assumed
static and rigid, the second and third components do not
occur● ‘.?henflexibility is taken into account so that
the second component is included, the problem is compli-
cated because of the interaction between the moments and
the bl~de deflections. If the third component is included
the problem is further complicated because the elastic
curve must satisfy dynamic as well as static conditions.

METHODS OF ANALYSIS

The methods Of analysts for rotor-blade bending
moments in tlw.plane of flapping that are available in
the literature fall into three categories as follows:

(1) ~tExactHanalyses in which inertia forces due”to
rate of change of blade deflections, as well
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as the Interaction bqtween blade deflections
and moments,are considered

.-.,. -.. ..... . -------- . ...... . . ..
(2) Analyses, based on “staticloadlngs, that include

interaction between blade bending and moments
but neglect inertia forces due to blade-
bending deflections

(3) Sim?lified analyses in which the bending moments
for the rigid blade are computed and approxi-
mate corrections to account for the reduction
in the bending moment due to the axial load
are applled; the reduction due to the axial
load has sometimes been called centrifugal
rellef

The analysis given in reference k is believed to be
the only published exact analysis and is based on the
rotor theory of references 1, 2, and 5. This theory has
been refined and extended in reference ~. In appendix A
of the present pcaer, one of these refinements - allowance
for the reduction in lift near the blade tip - is intro-
duced Into the analysis of blade bending.

Most of the solu.tlonsthat have been presented in the
literature fall into the second category, in which the
problem treated is purely a static one. This approach
reduces the problem to that of a beam under combined
bending and tension and, therefore, the methods developed
for such problems can be applied to the analysis of rotor-
blade -moments. In reference 6, a solution of this class,
which makes use of ‘Itypensolutions to facilitate the
numerical calculations, is given as a simpllflcatlon of
the analysis of reference k. Two other methods of solving
the static problem are given i.nreferences 7 and 8. In
reference 7 the solution is effected by means of the theo-
rem of threg moments generalized to include the effect of
centrifugal tension. In reforenco 8 the solution Is
obtained by finding a deflected shape for the blade that
is consistent with a minimum of potential energy for the
system,

The methods of the third category, which should have
more appeal for use in practtcal applications, provide
shpli.fled formulas for obtaining the bendhg moments in
the blade by correcting the rigid-blade bending moments
for the relief caused by centrifugal tension. Clerva has
proposed a formula, given in reference 6, which states
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that the moment developed In the actual rotor blade Is
equal to the product of the rigid-blade bending moment
and the perfectly flexible blade bending moment divided
by the sum of these two moments. The perfectly flexible
blade bending moment Is a fictitious bending moment
obtained by multiplying the stiffness of the actual blade
by the curvature of the perfectly flexible blade. The
solutions for the rigid-blade bending moment and the
flexible-blade bending moment are given in appendix B.
Hohenemser In reference 9 has developed a method of com-
puting the blade bending moment by multiplying the rigid-
blade moment by a correction faotor, given herein in
appendix B, that depends on the blade radius, blade
stiffness, and centrifugal force at the root. The formula
Is developed on the basis of uniform distribution along
the length of the blade of both the blade mass and blade
bendhg stiffness. Reference 10 contains a brief dlscua.
slon of Hohenemserts formula as well as the development
of formulas for the calculation of the rigid-blade bending
moments,

Although wind-tunnel and flight tests have proved
the basic rotor theory reliable when applied to the rotor
as a whole, the theory contains approximations that raise
some doubts as to the order of accuracy in computing air
forces at particular points in the rotor disk and, hence,
doubts aa to the accuracy of bending moments computed by
any of the methods mentioned herein. These doubts can be
removed only by further tests in which blade bending is
measured under operating conditions.

COMPARISON OF BENDING MOMENTS COMPUTED BY

DIFFERENT METHODS

In order to compare the bending moments obtained by
the several methods of analysis, calculations were made
for a rotor with three blades, each having the following
physical properties:

Radius, feet. . . . . . . . . . . . . . . . . . . 12.5
Mass, slugperfoot . . . . . . . . . . . . . . 0.0519

+
Bladechord, inches . . . . . . . . . . . . . . . . ~

Bending stiffness, EI, pound-feet2 . . . . . . . . 7640
Pitch setting (untwisted),degrees . . . . . . . . . 10

I
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The rotor was assumed to be rotating at 370 rpm and to
have a forward veloclty of 100 miles per hour, which
corresponds to a tlp-s~eed ratio u of 0.30. The ratio
of sJKl&lvelocity t~ t~p speed was assum~d to be -0.079;
the negative sign indicates flow downward through the
rotor disk.

The bending moments in the plane of flapping have
been computed for the rotor blade desorlbed in the
preceding paragraph by methods in each of the three
oatagorles of analysis mentioned in the preoeding section.
The moments computed for four azimuth angles (~) are pre-
sented In figure 1. Inspection of these moment diagrams
reveals that only a very small difference in computed
bending moment at any station exists between the values
given by the exact method and this exact method modified
by neglecting the inertia forces due to blade bending.
The small magnitude of this difference substantiates the
assumption, common to all approximate methods of analysis,
that these inertia forcgs are negligible.

The method of analysis proposed by Clerva, which is
given in detail in appendix B, gives a maximum bending
moment for any azimuth an&le that differs only slightly
from the maximum bending moment given by the exact method
for the same azimuth angle. The moment diagrams givenby
the Cierva method are in close agreement with the moment
diagrams for the exact method except for the outer third
of the blade. In the outer third of the blade the bending
moments predicted by the Cierva formula decrease to zero
less rapidly than those predicted by the exact method, but
this fact is of little consequence because in this part
of the blade the moments are less than the maximum moment.

The method of analysis proposed by Hohenemser gives,
as shown in figure 1, a bending moment diagram at each
azimuth angle that differs appreciably from those given
by the other methods. The computed moment is higher in
the inner part of the blade and lower in the outer part
as compared with the moment computed by the exact method.
At an azimuth angle ~ of 900, where the maximun bending
moment approaches its smallest value, the Hohenemser
method gives a maximum bending moment appreciably higher
than that given by the exact method. At * = 270°, where
the maximum bending moment approaches its largest value,
the Hohenemser method gives a maximum bending moment
appreciably smaller than that given by the exact method.

I -..—
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The latmr required to evaluate the bending stress
by the approximate methods of Clerva and Hohenemser 1s
only a small fraction of the labor required by the more
exact methods. Of these two approximate methods,that of
Clerva Is recommended for practical stress analysis of
helicopter blades because the bending stresses obtained
therebysreingoodagreemefitwith those given by the exact
method.

In figure 2 are shown the results obtained by the
exact analysis extended to include the effect of tip loss
by the method introduced by Wheatley (reference 3). The
tip-loss factor was assumed to be 0.97, which means that
the outer 3 percent of the blade is assumed to produce
no lift. The method of analysis used assumes zero moment
at the 0.97 point and does not consider bending between
this point and the tip. At all ezlmuth angles, the
consideration of tip loss reduces the maximum bending
moment considerably and causes a reversal of bending near
the tip. Because the assumption made concerning tip
effect is only a crude approximation of the actual lift
distribution in this region, the calculated moments near
the tip may be very much in error. The large reduction
in the bending moment near the center, however, is
significant.

The bending stresses at each station in the rotor
blades of a helicopter vary between a maximum and a
minimum with each revolution of the rotor. For the par-
ticular blade analyzed, which was assumed to be of all-
metal aluminum-alloy construction with a section modulus
of 0.167 inch cubed and an effective cross-sectional area
of 0.56 square inch, the total stress, which includes the
centrifugal tension and the superposed bending stress,
varied between the limits shown In figure 3 for the upper
and lower fibers at the different stations along the
blade. Figure 3 is based on the results of the exact
bending-moment analysis, neglecting tip loss.

CONCLUSIONS

A comparison was made of rotor blade bending-moments
obtained by several methods of analysis. The results for
the single numerical example studied indicate that the
additional accuracy obtainable by thenexact’ianalyses, when
compared with the best of the approximate methods now in

I
-. .—-. , ,.-. —.— ,, —--,, , .,, ,,, , ,, ,, —,,, mm m ■m—mm.
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use, does not justify the extra labor involved in applying
the exact method.

Of the two approximate methods studied, that of Clerva
gives the best over-all agreement with the more exact
analysis and Is well suited for the determination of
stresses in blades. The method proposed by Hohenemser,
although easier to apply thti the Clerva method, is less
desirable because it gives maximum bending moments that
may differ by as much as one-quarter from those computed
by the exact method.

Consideration of tip loss results in a substantial
reduotlon in mnximum bending moments and should receive
further attention in future studies of methods of blade
stress analysis.

Langley Memorial LeroneuticalLaboratory
National Advisory Committee for Aeronautics

Langley Field, Vs., Ju~
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APPENDIX A

EXACT METHOD OF CALCULATING ROTOR-BLADE BENDING MOMENTS

Differential Equation of Blade Bending

The basic assumptions of the blade-bending analysis
referred to herein as the exact method are Identical with
those used in reference b for the development of the dif-
ferential equation except that a correction is added to
include the effect of tip loss. The correction for tip
loss follows the method developed by Wheatley in refer-
ence 3 in which the air load on the outer few percent of
the blade is neglected.

Figure b shows the coordinate system used and the
nomenclature involved in defining the deviation of the
flexible blade from the rigid blade. The symbols used in
the analysis are defined in appendix C. In figure 5 are
shown the forces and moments acting on each blade element.
A consideration of the equilibrium of the element in the
direction parallel to the longitudinal axis of the blade
and in the direction normal to the blade yields the
following differential equation for the blade bending
deflections:

If the blade mass Is uniformly distributed from hinge to
tip, the mass of the tip section, which is assumed to be
without air load, is

Q = nil(l - B)

and the distance from the tip mass to the hinge is

RQ = :(1 +B)

If these relationships are substituted in the second term
of the differential equation some simplification results
and the differential equatfon becomes
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If the tip 10BS Is neglected, B reduces to unity.-. and the -dlffenentlalequatl~n reduoes to t-hatgiven in
reference 4S

. , . ...

131adeLoading

The term on the right-hand aide of equation (Al)
represents the blade load gradient, which Is assumed
to be the same as that on a rigid blade. The blade .
loading can be evaluated hy means of the rotor theory
given in references 1 and 3. In the present analysis the
blades are assumed to be built with constant chord and
wi~llout twist ark the effect of periodic twist of the
blades is nGglocted. The effect of both types of twist
can be considered by the methods of references 2 and 3.

If the instantaneous flapping angle of the blades 1s
represented by the equation

P = a. -alcosw-blsin~ (A2)

the velocity components causing aerodynamic forces on
the blades are

UT =

w=

The load gradient

Xm + pm sin w

Am - x~(al sin * - bl COS ~)

1

(~.3)

-@(s. - al ccs * - bl sin v)cos 4

is then given by

ds
- $f)a(uTup+ 8@2) - ~@aox - mg.z- (W

Introduction of the relationships given in equa~
tions (~3) into equation (A4), expanding, and neglecting
higher harmonics gives for the load gradient



—— .-—___

10

dS
z

= +13w
([

e B2X2 +
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[
+ blB2x2 - ao#J3x+ 1 2bl

d }
Cos IJ (A5)

The fla?plng coefficients ao, al, ad bl, which
define the blade motion given in aquatlon (A2), are deter-
mined from the condition that the moment at the flapping
hinge is zero for all azimuth angles. The coefficients
arg:

(4Be + 3A)
al =

3(2* - w2)
}

(A6)

8pBao
bl=~

3(2.* + pq J

where

11 = Q3RRQ + $mB3113

Y . cpR4
11
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Solution of the Differential Equation of Blade Bending------, .. .. .
The method of-.sol~tlon’of-tli&-diff%rentlal.-equatlo~ , .

follows that given in reference 4.. The blade deflections
are assumed to be expressible in theform

Y =y1+y2sln*+y3cos W (A’L7)

in whioh yl, 72, and Y3 are functions of the distance
along the blede span. Substitution of equation (A7) and
(As) in the dlf’f~rentlalequation (Al) yields ths following
differential equations for the functions Y1, Y2, ~d Y39

(A8)

The
and

-Kk+%$-x!ls+2K+2Q’-==TalB
(A9)

-K[t+=)-’12++--= o”~*BwB
1 ‘~1-a@x + -p 1
4

(Ale) .

four boundary conditions that the functions yl, y2,
y3 must satisfy are : At the hinge the deflection

— — -. -. _ ___ _ . .
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and moment are zero, and at radius RR the moment is zero
and the shqar 1s that required to maintain equilibrium of
the tip mass Q. The last-mentioned boundary condition,
at x = 1.0, can be expressed in the following form:

d~72 dy2
A‘- = ‘d;-- ‘2~:j

where

EI
A=

@ d%%- “*

The differential equations for YI, y2, ~d y Cm
?be solved approximately by the method of “colloca ionll.

(See referenc9 ~..) The method of collocation consists
essentially of expressing the solution as a linear com-
bination of functions that sat!sfles the boundary condi-
tions indenendentl~ of the value of the coefficient
associated with ewh function, The combination of
functions Is substituted into the differential equation,
and the cceff’tclentcare so adjusted that the resultant
expression satfsfies the dlfterential equation at as
many points as there are functions.

When the tip effect Is considered the f’ollowlng
set of functions can be used:

{‘p -k’”‘%$‘+2’1’“+2‘~+’
}-[(p + ~)(p + 2)A + I]x
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-,.

n

Y2 =
&(

p+2 -C2P x
)

WXP+3

P-
p+3=

u p+2

)

p + lxp+3
73 = C3PX “—

p+3
p=l

If the tip ef:~ct Is neglected, the form of the “
solution for Y1 ,

n

(

2p +2
—Clpx “—= Cllx + ) p+l P(P + 11

Y1 XP +

)

XP+3

p=z
p+2 (p +2)(p + 3)

The form of solution for y2 and y3 remains as
before.

Numerical Example

A numerical example is presented with tip loss
neglected, for a blade with the following properties
and operating conditions:

12.5 feet

~ Inches

0.0519 slug per foot

59?3

764-0 poud-feet2

38.8 radians per second

0.300

-0,079

loo = 0.175 radian

0.00230 slug per cubic

. . . . . . —-. . . -—— , .

foot

.-
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If the tlp loss is negleoted,

s =1.OandQ=Cl

Equations (A6) give the following values for the
flappl~ coefficient:

ao =

al =

bl =.

The factors y and K

Y =

K=

If six functions are
differential equation for

(C,lx + C12 X3 “ xYl= . 4+

0.0’77922

0.096963

0.029827

have the following values:

795335

124.83

chosen for the solution to the
Y1s the form of the equation is

+ W& - *6 + @ + C15 (’6 - y7 + *8)

(All)

When this function is substituted in the differential
equation (A8), the equatim 1s satisfied at the points
x = O, 0.2, 0.4, 0.6, 0.8, and 1.0 if

cl~ = -00171 foot cm = -0.919 foot

C12 = 0.133 foot C15 = 0.569 foot

c13 = 1.197 feet C16 = 0.503 foot
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Substitution of the coefficlents In equation (All)
yfelds

-.

Y1 = -0.171x + 0.133x3 + 1.064x4 - 2.315x5 + 2.273x6

-o.71+8x7-0.449x~ + 0.2g3x9

The corresponding bending moments are obtained by,. -F
differentiating twice

Ml = 40.9(0.795x

and multiplying by ~, which gives
R2

+ 12.77x2 - 46.30x3 + 68.18x4

-31.40X5 - 25.17x6 +21.12x7)

By a similar process the rasults for M2 and M3 corre-
sponding to the deflections y2 and y3 are

h12= @9(5.16x -4-2.19x2 +136.ix3 . 239.9x4

+ 232.3x5 - 109.2x6 + 17.8x7)

M3 =L8.9(0.333x +1.32x2 - 5.08x3 +5.93A

+ 1.59X5 - 9.18x6+ 5.09x7j

The general expression

M= Ml +

At a distance from the
bending moment is

M = 43.2-

for the bending moments is

M~ sin ~ + M3 Costf

flapping hinge of x = 0.6 the

15.9 sin * + 9.0 cos$

..,-—— , ,—-,. . ,—



.—. - _

16 I?ACAARR No. L5E23

The minimum bending moment at the station x = 0.6
occurs when W = 1200 and is

M = 43.2 -13.8 -4..5 =24.9 pound-feet

The maximum bending mcment at the station x = 0.6
occurs when W = 300° and iS

M = 43.2 + 13.8 + 4.5 = 61.5 pound-feet
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APPENDIX B
“.

M&HO’DiI‘OF CtiCtiiiiiNGROTOR”- ‘“ “-

BLADE BENDING MOMENTS

Cierva Method

The Cierva formula for the bending moment in a
rotor blade, given in reference 6, is

MrMf
M=—

Mr + Mf
( Bl)

where Mr is the moment in a
fictitious moment obtained by
of a perfectly flexible blade
stiffness EI.

rigid blade and Mf iS &
multiplying the curvature
by the actual blade bending

If the blade is assumed rigid
neglected, the rigid-blade bending
Integrating the moment of the load
equation (A5) Is

and tip 10SS iS
morent obtained by
gradient given in

r

\

+ blCx - kaoBx (B’)

(B3)

in which
lyl

Ax =
i]xx )dxdx=:h’x+x’

( )Xdxdx =1 2 - 3x + x3
6

X’dxdx = *(3 - k + ~)
1

c. = uxx
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If the blade loading for the perfectly flexible
blade is”assumed equal to that of the rigid blade the
fictitious moment existhg In the blade Is

{[

(3+9P 2.*

Mf ‘ ~~- @2

9R (1 +X)2

i

-a~+&2 +3ph
)+

+ -a1-
(1 +X)2

+1.,-=]-,}” (~,

The numerical values of Mf and Mr can then be
combined to Ive the actual blade bending moment according

?)to equation B1 .

In reference 9 Hohenemser developed the following
formula for the moment in a blade that has a uniform
distribution of both blade mass and blade bending
stiffness:

Mr
M== (B5)

R2P0
1 + o.052—

EI

in which Mr is the rigid-blade bending moment and PO
is the centrifugal tension at the flapping hinge.

For a blade of uniform mass distribution,.

Substitution of the value for PO In equation (B5)
reduces this equation to

M=
M??

I + 0.052K
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In which
. -..-“ ,. ‘,-. ........,.,.,,--- mR4# .

K=—
2EI

Numerioal Examples

The bending moments h the same blade and for the
same operating conditions as were considered in appendix A
are calculated by both Cierva~s and Hohenemser~s method
for x = 0.6 and ~ = ~oo ~~ 3000*

‘Whenthe basic data from ap~endix A are substituted
in equation (B?) the followlng result is obtained:

% [
= 192,000 (o.1750cx - o.1410~ + 0.00651AX)

- (0.0970CX - o.1050~ + 0.0215AX) sin *

+ ~o.0298cx -
1

0.0234~ + 0.00067AX) cos ~ (B6)

For x = 0.6, equations (B5) give

Ax = 0.0800

% = 0.0693

c~ = 0.0608

Substitution of.these values of Ax~ ~s ~d Cx in
equation (B6) gives the following expression for the
rigid-blade moment at x = 0.6:

I& = 265 -65sin*+48cos*

The
obtained

Mf = 512

r

perfectly flexible blade bending moment 1s
from equation (B!!)and is

[[

0.1750 - 0 ● 1945 1[ 0.161

1
-0.0970 + ~ sin ~

(1 +X)2 + (1 + X)2

1 1}

+ 0.0298-3 COS IJI



——— .—. .
I

20 NACA ARR No ● L5E23

At X = 0.6,

Mf = 50.7 - 17.4 sh~ + 8.9 cos w

At$= 120° (the approximate posltton for minimum bending
moment),

%?
= 265 - 56 - 24 = 185 pound-feet

Mf = 50.7 - 15.1 - 4.4 = 31.2 pound-feet

Therefore, the Cierva method (see equation (Bl))
gi~e:2:~r the bending moment M at the azimuth position
v #

M= 195 x 31.2 = 26.7 pound-feet
105 + 31

Similarly, the Cierva method gives for W = 300°

?4= 5!3.4. pound-feet

When Hohenemserts method ifiused, at W = 120°,

185 x
1

M= = 24.7 pound-feet
1 + (0.052 x 124.8)

and similerly, St O= 3000,

1
RI= 3k5 x = 46.o pound-feet

1 + (0.052 x 124.8)
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APPENDIX c

. .

A

a

Eio

al

bl

B

Clp c2p c3p

c

~1

g

‘1

K.

dL

M

Mls M2s M3

‘f

%?

‘w

--r .-, --- SYMBOLS ..

dimensionless coefficient (EI/Q#R2~@j ~

slope of lift curve

constant term in Fourier series that
expresses P

coefficient of cos * in expression for p

coefficient of sin * In expression for p

tip-loss factor (blade elements outboard of
radius BR are assumed to have no lift)

coefficients in equations for yl, y2, ~d y3

blade chord (constant)

flexural stiffness of blade

acceleration due to gravity

mass moment of inertia of one rotor
about horizontal hinge

blade

dimensionless coefficient (mB4R4#/2EI)

aerodynamic lift on blade element at radius r

bending moment in blade at radius r

moments corresponding to the deflection
functions yl, y2, ~d Y3

flexible-blade bending moment as defined In
appendix B

bending moment in blade at radius r (blade
assumed to be a rigid body)

weight moment of blade about horizontal
hinge
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m

n

P

P

Po

“Q

R

RQ
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mass of blads per unit length between
hinge and radius ~

an arbitrary integer

any integer greater than zero end less than
or equal to n

tension in blade at radius r

tension in blede at horizontal hinge

mass of blade
radius R

blade radius

distonce from
of -gravity

tip between radius ~ and

center of rotation to center
of mass Q

radius of blade element

shear in the blade st radius r

time

veiocity component at blade element perpen-
dicul&r to blade span exis and parallel
to rotor disk

velocity compor.entat blede elemsnt perpen-
dicular both to blade span and to UT

ratio of blade-element radius to ~

deflection of blade element at radius r,
referred to rigid-blade position

deflection functions entering Into the
,gensralequation for y

blade flapping angle

angle between plane perpendicular to axis of
rotstlon and line connecting horizontal
hinge with blade element at radius r
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